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Abstract. The linear dc and high-frequency transresistivity of coupled electron-hole systems are inves-
tigated using the Lei-Ting balance equations approach extended to include many-body corrections. A
possible indirect method of experimentally measuring the dynamical transresistivity in the high frequency
(terahertz) regime is designed basing on the detailed analysis on the relationship between the directly mea-
surable resistivities in the electron- and hole-layer and the dynamical transresistance. The theoretically
predicted dc transresistance is in good agreement with the experimental data for the given electron-hole
system experimentally investigated. The calculated dynamical transresistance exhibits pronounced double-
resonant structure, which can be attributed to the cooperation and competition between the two plasmon
modes. It is pointed out that the behavior of the frequency-dependent transresistance is temperature-
sensitive and the dynamical transport properties are essentially influenced by the short range correlations.

PACS. 72.30.+q High-frequency effects; plasma effects – 73.50.Mx High-frequency effects; plasma effects

1 Introduction

Recently, there has been considerable interest in the
Coulomb drag between spatially separated electron-
electron and electron-hole systems, which was experimen-
tally observed by Gramila [1] and Sivan [2]. In these two-
layer charged systems, there are two branches to its lon-
gitudinal collective excitation spectrum [3]. It is natural
that these collective excitation modes will significantly in-
fluence Coulomb drag, because these are precisely the ex-
citations that mediate the momentum and energy transfer
between the two layers. Flensberg and Hu [4] have theo-
retically investigated the role of the two plasmon modes in
the inter-layer momentum transfer due to Coulomb inter-
action between two parallel quasi-two-dimensional elec-
tron gases. Their theoretical calculations demonstrated
that the plasmon modes can substantially enhance, even
by an order of magnitude, the Coulomb drag rate for the
experimentally measured systems with equal Fermi veloc-
ities and its contributions result in the deviations from
the famous T 2 behavior. Subsequently, they argued that
the optimum situation for plasmon enhancement occurs
when two layers have the same Fermi velocities vF,1 = vF,2
and the transport measurement of Coulomb drag rate
provides a sensitive probe for the double-layer coupled
plasmon modes. On the contrary, if vF,1 � vF,2, the
phase velocity of the plasmons is much higher than vF,2,
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making it difficult for the scattering of particles in layer
2 to be enhanced by the plasmons. This is just the case
that appeared in the coupled electron-hole systems stud-
ied by Sivan et al. [2]. Due to the large mismatch between
the effective masses of electrons and holes, in order to
satisfy the optimum condition of plasmon enhancement
the concentration of holes must be about 45 higher than
that of electrons. This restriction is so severe that the
effect of the plasmon enhancement is very weak in the
Sivan et al. systems [4]. On the other hand, many-body
corrections due to the effects of exchange and correlation
play a significant role in describing the coupled electron-
hole transport, which can largely enhance the Coulomb
drag rate and remove the obvious disagreement between
the experimental data and the theories under RPA [5].
Moreover, the correlations will also affect the plasmon
modes, and then modify the carrier concentration and the
temperature dependence of transresistance in an elaborate
way [6].

In the present paper, we propose calculations to
markedly exhibit the two plasmon modes in the electron-
hole systems. Plasmon can manifest itself saliently in reso-
nant behavior of the linear high-frequency conductivity in
semiconductor and this interesting phenomenon has been
already explored intensely for a long time [7–10]. The most
obvious way collective excitations contribute to the dy-
namical conductivity’s resonant feature is through the in-
clusion of screening, the zeros of the dielectric function.
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In contrast to the single layer systems, the dielectric func-
tion of the coupled two-layer systems has more compli-
cated properties and contains richer information. There-
fore, it is believed that the plasmon modes have a more
profound effect on the high-frequency transfer transport
properties in the double-layer systems.

So far, most theories have concentrated on dc tran-
sresistance [4–6,11]. Only Zhang and Takahashi [12] cal-
culated the frequency dependence of conductivity in the
zero-temperature limit for two electron layers, taking into
account both the direct electron-electron interaction and
the phonon-mediated electron-electron interaction. A few
years ago, the balance-equations approach for several
types of carriers systems [13] was applied to the coupled
electron-hole transfer transport [14]. Such an approach
has previously been used to investigate the steady-state
nonlinear dc and linear high frequency transport prop-
erties of type-II superlattices [10], and a two-component
plasma consisting of minority electrons and majority-holes
in a single GaAs–AlGaAs quantum well [15]. Here we ex-
tend this method to include the many-body corrections
within the local-field corrections developed by Singwi et al.
(STLS) [16] and analyze the linear high-frequency behav-
ior of transresistance in coupled electron-hole systems. We
find a novel double-resonant structure in the dynamical
transresistance, which can be attributed to the coopera-
tion and competition between the two plasmon modes.

2 Balance-equations for double-well systems

In the present study we consider a double well structure,
with electrons in one well and holes in the other. The two
quantum wells have the common width w and the center-
to-center distance between the two wells is d. Carriers in
each well are free in the x-y direction and confined in
the z direction. In the calculation, we assume that (i) the
potential barrier separating the two wells is sufficiently
high that tunneling can be neglected and carriers confined
to just one well, and (ii) the width of the well is narrow
and the carrier area density is not too high so that only
the lowest subband is occupied. The wavefunction of the
carrier in the jth well can be written as

ψjk(r, z) = eik·rζj(z), (j = 1, 2), (1)

with energy εjk = k2/2mj, where mj is the effective mass
of carrier in the jth well and r ≡ (x, y) and k ≡ (kx, ky)
are two-dimensional vectors in coordinate and momentum
spaces, respectively. ζj(z) is the envelope wave function in
the jth well. Each well is a carrier-phonon-impurity sys-
tem and the electron-well is coupled with the hole-well due
to the Coulomb interactions between electrons and holes.
The bare intra-layer and inter-layer Coulomb interactions
take the form

Vjj′ (q) = (−1)|j−j
′| 2πe

2

κq
Hjj′(q),

Hjj′ (q) =

∫
dz

∫
dz′e−q|z−z

′||ζj(z)|2|ζj′(z
′)|2, (2)

where κ is the dielectric constant of the material.
Consider a small amplitude high-frequency signal elec-

tric field of frequency ω,

E(t) = E1m cos(ωt) = E1mRe(e−iωt),

applied to the driving layer (layer 1), the electron-well
here, along the x direction. After transient process, not
only will the center of mass of the electrons execute sim-
ple harmonic vibration in the applied field direction at the
given frequency ω [10], but the holes in the dragged layer
(layer 2) can also be driven at the same frequency due to
the Coulomb interactions between the two wells. Hence,
an ac electric field with an amplitude E2m and an oscil-
latory current will be induced in the hole-well having the
same frequency as the driving electric field. In this paper,
we focus our attention on the linear high-frequency con-
duction. Then the electrons and holes are all at a common
temperature, i.e., the lattice temperature T , as in the lin-
ear dc case. According to the Lei-Ting balance equations
for several types of carriers, the linearized equations of
motion for the centers of mass of the electrons and holes
yield [10]

−ωNemev1m = −NeeE1m + (v1m/ω)F (1)(ω)

+ (1/ω) (v1m − v2m)F12(ω), (3)

and

−ωNhmhv2m = NheE2m + (v2m/ω)F (2)(ω)

+ (1/ω) (v2m − v1m)F12(ω), (4)

where Ne (me) and Nh (mh) are the electron and hole
area densities (effective masses), respectively. vjm is the
amplitude of the drift velocity for electrons (j = 1) and
holes (j = 2). The resistive forces F (j)(ω), due to impurity
and phonon scatterings within the jth well, are given to
the lowest order by (j = 1, 2) [10]

F (j)(ω) =
∑
q

q2
x

q2
|Ujj(q)|

2
[
Π̂(j)(q, 0)− Π̂(j)(q, ω)

]
+
∑
Qλ

q2
x |Mjj(Q, λ)|2

[
Λ(j)(Q,λ, 0)− Λ(j)(Q, λ, ω)

]
,

(5)

where

Λ(j)(Q, λ, ω) =

Π̂(j)(q, ω −ΩQλ)

[
n

(
ΩQλ

T

)
− n

(
ΩQλ − ω

T

)]
+ Π̂(j)(q, ω +ΩQλ)

[
n

(
ΩQλ

T

)
− n

(
ΩQλ + ω

T

)]
. (6)

Ujj(q) and Mjj(Q, λ) are the coupling matrix elements
of carrier-impurity and carrier-phonon interactions within
the jth quantum well, which are given in reference [17].
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The function F12(ω) due to electron-hole interaction is
given by

F12(ω) = −
∑
q

|V ′12(q)|2q2
x [Γ (q, 0)− Γ (q, ω)] , (7)

in which

Γ (q,ω) =

∫ ∞
−∞

dω′

π
n

(
ω′

T

)[
Π

(1)
2 (q, ω)Π(2)(−q, ω − ω′)

−Π(1)(q, ω + ω′)Π
(2)
2 (−q,−ω′)

]
, (8)

with the imaginary part

Γ2(q, ω) =

∫ ∞
−∞

dω′

π

[
n

(
ω′

T

)
− n

(
ω′ − ω

T

)]
×Π(1)

2 (q, ω′)Π
(2)
2 (−q, ω − ω′). (9)

According to STLS [5,16], the effects of exchange and cor-
relation can be taken into account by simply replacing the
bare Coulomb interactions with the effective potentials
modified by the local field factors

V ′jj′ (q) = Vjj′ (q) [1−Gjj′(q)] . (10)

Therefore, in order to revolve the influence of short range
correlations on transport, we should do this substitution
in the Lei-Ting balance equations. Recently, we proposed
an analytical expression and develop a sum-rule version
within the self-consistent approach of STLS for the inter-
layer local field corrections in the weakly coupled two-layer
systems [18]. Employing this analytical form of local field
factor, we can greatly simplify the calculations. Of course,
by assuming Gjj′ (q) = 0 in these equations, the short
range correlations can be excluded and the RPA results
are recovered. Furthermore, in all the above equations,
Π(j)(q, ω) are the density-density correlation functions of
electrons (j = 1) or holes (j = 2) alone, which, within the
STLS approach, are given by

Π(j)(q, ω) =
Π

(j)
0 (q, ω)

1− V ′jj(q)Π
(j)
0 (q, ω)

, (11)

where Π
(j)
0 (q, ω) is the density-density correlation func-

tion in absence of the inter-particle Coulomb interaction

Π
(j)
0 = 2

∑
k

f ((εjk+q − µj)/T )− f ((εjk − µj)/T )

ω + εjk+q − εjk + iδ
·

(12)

f(x) = [exp(x) + 1]
−1

is the Fermi-Dirac function, and the
chemical potential µj is determined through the relation

Nj = 2
∑
k

f ((εjk − µj)/T ) . (13)

3 High-frequency transresistivity

At present, most experiments [1,2,6] focused on the con-
figuration, in which only one of the quantum wells (layer
1 here) is subject to an electric field, and no net current
is allowed to flow in the dragged layer (layer 2 here) but a
voltage arises due to charge accumulation which balances
the drag-induced carrier drift. This is because of the fact
that under such conditions, measurement of the voltage
is directly proportional to the inter-layer drag rate, thus
provides a convenient, direct and sensitive probe of the
important inter-layer Coulomb interactions. Therefore, we
devote ourselves to theoretical investigation of the linear
high-frequency behavior for the Coulomb drag in the case
of so-called “open circuit” in the dragged layer. Owing to
v2m = 0, it is easily seen from equation (4) that

E2m =
1

Nheω
v1mF12(ω). (14)

On the other hand, the current density carried by the elec-
trons in the driving layer is J1m = −iNeev1m. The linear
high-frequency complex transresistivity can be defined as
ρT (ω) ≡ E2m/J1m. Substituting equation (14) into the
definition, one can obtain

ρT (ω) = i
1

NeNhe2

F12(ω)

ω
, (15)

with the real part RT (ω) given by

RT (ω) = −
1

NeNhe2ω

∑
q

|V ′12(q)|
2
q2
x

×

∫ ∞
−∞

dω′

π

[
n

(
ω′

T

)
− n

(
ω′ − ω

T

)]
×Π

(1)
2 (q, ω′)Π

(2)
2 (−q, ω − ω′), (16)

which illustrates the inter-layer momentum relaxation in
the case of linear high-frequency transport. It is noted
that in the zero-frequency limit equation (16) reduces to
the linear expression for the dc transresistivity [4,5,10,
11]:

RT (0) = −
1

NeNhe2
Im

∂F12(ω)

∂ω

∣∣∣∣
ω=0

=
1

NeNhe2T

∑
q

q2 |V ′12(q)|
2

×

∫ ∞
0

dω′

π

[
e
ω′

2T n

(
ω′

T

)]2

Π̂
(1)
2 (q, ω′)Π̂

(2)
2 (q, ω′).

(17)

4 A possible experimental method to measure
the high-frequency transresistivity

In above paper the definition of the dynamical transresis-
tivity is given and the theoretical expression equation (16)
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is derived for the coupled electron-hole systems by means
of Lei-Ting balance equations approach for several types
of carriers. Through equation (16), we can theoretically
investigate dynamical transfer transport properties of the
coupled electron-hole systems, especially the effect of plas-
mons on the dynamical transresistance. In general, the
resonant effect of plasmon becomes pronounced in the dy-
namical transport in two-dimensional systems when the
frequency of the external ac electric field is of the order of
the Fermi energy [9], i.e. typically in the terahertz (THz)
regime for the carrier densities 1010 ∼ 1011 cm−2 in the
modulation-doped quantum wells. At such high external
driven frequency the direct measurement of the dynam-
ical transresistance in the coupled electron-hole systems
according to the definition is difficulty due to experimen-
tal inaccessibility of the THz longitudinal electric fields.
However, the information of the dynamical transresistance
can be indirectly extracted from those measurable quan-
tities in the THz regime. A possible method is suggested
as follows.

In the coupled electron-hole systems, the normally in-
cident THz radiation (which is perpendicular to the layer
plane of the two-dimensional quantum wells) provides a
high frequency oscillating electric field along the layer
plane in both electron- and hole-layer, because the center-
to-center spacing d is far less than the wavelength of the

THz electromagnatic wave. Therefore, the resistivity ρ
(e)
1

of electrons can be directly measured when the hole-layer
keeps open configuration. On the other hand, if current
allows to flow not only in the electron-layer but also in
the hole-layer, we can also individually detect the resis-

tivity ρ
(e)
2 of electrons in the electron-layer. It is obvious

that the two quantities are different due to different effects
of the additive second layer (the hole-layer here) on the
electron-layer in the two different configurations and both
of them contain the information of the dynamical transre-
sistance of this coupled electron-hole system. In the first

configuration, the resistivity ρ
(e)
1 can be easily obtained

from equation (3)

ρ
(e)
1 =

E1m

iNeev1m
= ρe + ρT , (18)

where ρe =
(
−ime/Nee

2
)

[ω + F1(ω)/Nemeω] is the dy-
namical resistivity of the individual electron-layer. In the
second configuration, no induced electric field arises in the
two layers because currents are allowed to flow in both
of the two layers. Therefore the linearized balance equa-
tions of motions for the centers of mass of holes can be
written as

−ωNhmhv2m = NheE1m + (v2m/ω)F (2)(ω)

+ (1/ω) (v2m − v1m)F12(ω). (19)

With the help of equations (3, 19) v1m can be easily
solved as

v1m =

Ne

(
F2

ω
+
F12

ω
+ωNhmh

)
−
F12

ω
Nh(

F1

ω
+
F12

ω
+ωNeme

)(
F2

ω
+
F12

ω
+ωNhmh

)
−

(
F12

ω

)2 eE1m.

(20)

Then we can write the experimentally measurable quan-

tity ρ
(e)
2 = E1m/iNeev1m as

ρ
(e)
2 =

[
ρe + ρT

(
Neρe

Nhρh
+ 1

)]
1

1 + Ne−Nh
Nh

ρT
ρh

, (21)

in which ρh =
(
−imh/Nhe

2
)

[ω + F2(ω)/Nhmhω] repre-
sents the dynamical resistivity of the individual hole-layer.
Especially when the carrier concentrations in the two lay-

ers are equal, ρ
(e)
2 can be simplified as

ρ
(e)
2 = ρe + ρT

(
ρe

ρh
+ 1

)
. (22)

Similarly, the two directly measurable resistivities ρ
(h)
1 and

ρ
(h)
2 in the hole-layer corresponding to the two cases in

which the electron-layer keeps “opened” and “closed”, re-
spectively, can be derived as

ρ
(h)
1 =

E1m

iNhev2m
= ρh + ρT , (23)

and

ρ
(h)
2 = ρh + ρT

(
ρh

ρe
+ 1

)
. (24)

From the four relations equations (18–24), we can eas-
ily extract the dynamical transresistance of the coupled
electron-hole systems from the four experimentally de-
tectable quantities

ρT =

√(
ρ

(e)
2 − ρ

(e)
1

)(
ρ

(h)
2 − ρ(h)

1

)
, (25)

in the case of Ne = Nh.

5 Double-resonant structure in the dynamical
transresistance

Basing on equations (16, 17) we can numerically calcu-
late the linear dc and high-frequency transresistances for
the coupled electron-hole systems. In the following cal-
culations, we take the double AlGaAs–GaAs quantum-
well structure with w = 10 nm, d = 30 nm, and the
same carrier concentrations in the two layers Ne = Nh =
0.5 × 1011 cm−2 as an example. The material parame-
ters are typical values of GaAs: me = 0.067m0 (m0 is
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Fig. 1. The calculated normalized real part of the complex
transresistance RT (ω)/RT (0) are shown as a function of the
driving frequency ω/EF for the coupled electron-hole layers
with well width w = 0.1 nm, layer spacing d = 30 nm and
the equal carrier concentrations of 0.5× 1011 cm−2 in the two
layers at the temperature of 10 K. These parameters corre-
spond to the experiment of Sivan et al. [2]. The discrete points
are RT (ω)/RT (0) evaluated by neglecting the plasmon contri-
bution. EF is the Fermi energy of the electron layer at the
absolute zero temperature. Inset: the temperature dependence
of the linear dc transresistance by using equation (17) with
(solid line) and without (dashed line) considering the short
range correlations are plotted for the same system. The solid
dotes represent the experimental data measured by Sivan et al.

the free-electron mass), mh = 0.4m0, and the static di-
electric constant κ = 12.9. This system is experimentally
measured by Sivan and the solid dots in the inset of Fig-
ure 1 represent the experimental data [2]. The theoreti-
cally computed temperature-dependent linear dc transre-
sistances with including (STLS) and excluding (RPA) the
short range corrections are also plotted in the inset by the
solid line and the dashed line, respectively. It is obvious
that the short range corrections play a substantial role in
the Coulomb drag and its contributions make the fit to
the experimental data significantly improve [5].

In Figure 1 we plot the calculated normalized real part
of the high-frequency transresistance RT (ω)/RT (0) as a
function of normalized frequency ω/EF (EF is the Fermi
energy of the electron-layer at zero temperature) at the
lattice temperature of 10 K. For comparison we also show
the results obtained by neglecting the plasma pole contri-
butions as discrete points. From the figure, we can eas-
ily see that the enhancement in RT (ω)/RT (0) due to the
collective modes is very pronounced, resulting in the ex-
citing feature in the frequency-dependent transresistance:
a strong plasma resonance. The enhancement exists in a
very broad frequency range, nearly from 0.5EF to 5.5EF
and the strongest contribution can raise the dynamical
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Fig. 2. Integrand of equation (16) as a function of energy
transfer ω′/EF at the fixed q0 = 0.4kF (kF is the Fermi
wavevector of the electron layer at zero temperature) and sev-
eral driving frequencies ω for the same system as Figure 1. (a)
ω/EF = 0.8 (dashed line), 1.0 (dotted-dashed line) and 1.1
(solid line). (b) ω/EF = 2.0 (dashed line), 2.3 (dotted-dashed
line) and 2.4 (solid line). In the inset of (a), the dispersion re-
lations of the two plasmon modes I and II are depicted by solid
curves (STLS results) and dashed curves (RPA), respectively.
In (a) and (b), the peaks labeled as 1 and 2 are attributed
to the contributions of the plasmon I, while the 3 peak corre-
sponds to that of the plasmon II.

transresistance by about a hundred percentage. This simi-
lar feature of the linear dynamical resistivity has long been
recognized in the single quantum-well [8] and the type-
II superlattice systems [9,10]. Of course, the distinctive
plasmon dispersion curves ωp(q) in different systems show
distinguishable discrepancies in the delicate frequency
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Fig. 3. The calculated frequency dependence of the real part
of the complex transresistance RT (ω) at temperatures T = 10,
15, 20, and 35 K for the same system. Solid lines – theory with
correlations (STLS here); dashed lines – RPA results.

behavior of dynamical transport. As illustrated in the in-
set of Figure 2a, the special plasmon dispersion curves
of the electron-hole systems concerned in the present pa-
per, which consist of two branches, one in lower energy

(branch I) ω
(I)
p (q) and another in higher energy (branch

II) ω
(II)
p (q), provide two accessible channels to contribute

to dynamical transport. Because of the different energy
spectrums in the two plasma modes, the weight and the
frequency threshold of enhancement in one channel are
different from those in other one, indicating a possible so-
phisticate structure in the frequency-dependent transre-
sistance. The theoretical investigation here, as displayed
in Figure 1, shows a very striking feature, double-resonant
peaks, in the frequency behavior of transresistance for the
given electron-hole system at the temperature of 10 K,
which is appreciably different from the previous findings
[7–10,12]. In the following, we give a detailed explana-
tion of how the particular two plasma modes result in this
double-resonant phenomenon.

The argument that there are different weight and the
frequency threshold of enhancement in these two channels
is graphically depicted in Figures 2a and 2b, which show
the integrand of equation (16) as a function of ω′ for fixed
q0 = 0.4kF (kF is the Fermi wavevector of electron-layer at
the absolute zero temperature) and several frequencies ω
of the external driving ac electric field. The relatively flat
parts of these curves are the single-particle contribution to
the dynamical transresistence, while the three peaks are
the plasmon contributions. In the inset of Figure 2a, the
plasma modes I and II are also shown for this given system
at the finite temperature T = 10 K. At q0 = 0.4kF , the
energies of modes I and II are about 0.6EF and 1.7EF ,

respectively. Therefore, it is clear that the two peaks la-
beled as 1 and 2 are attributed to the lower plasmon I,
while the peak 3 results from the upper plasmon II. Since
the plasmon I is lower in energy than the plasmon II and
hence is easier to excite. In consequence of this fact, as
expressed by the dashed line in Figure 2a, the plasmon I
predominates in the enhancement effects for the case of the
lower driving frequency ω = 0.5EF . With increasing of the
driving frequency, the plasmon II starts to give a percepti-
ble contribution to the integrand. Up to about ω = 1.1EF ,

at which the equality ω
(I)
p (q0) + ω = ω

(II)
p (q0) is satisfied,

the peak 3 happens to meet with the peak 2 and the two
plasma modes are in perfect harmony. The value of the
plasmon peak at this point (solid line in Fig. 2a) is raised
even by a order of magnitude in contrast to the cases
of other driving frequencies. As results, the frequency-
dependent real part of the transresistance RT (ω)/RT (0)
reaches a maximum at ω = 1.2EF or so. When the peak
3 is more closer to the peak 1 at higher driving frequen-
cies, a upturn of RT (ω)/RT (0) appears again due to the
more stronger contributions of the plasma modes as dia-
gramed in Figure 2b. In addition, similar to the situation
in Figure 2a, there exists a new merging of the peaks 1
and 3 at the particular driving frequency which satisfies

ω − ω
(I)
p (q0) = ω

(II)
p (q0). It is out of question that the

second maximum in RT (ω)/RT (0) at ω = 2.4EF is at-
tributed to the strongest enhancement effects. Note that
at further large driving frequencies, the plasmon enhance-
ment become trivial and negligible and hence a fast falloff
of RT (ω)/RT (0) with ω is found.

6 Temperature dependence

We now briefly discuss the dependence of dynamical tran-
sresistance on the temperature and the role of the short
range correlations. As the temperature is raised, the en-
hanced Landau damping erodes the oscillator strength of
the two plasmon modes, increasingly blurring the distinc-
tion between the two resonant peaks in RT (ω). Figure 3
explicitly shows the dimming of the double-resonant struc-
ture at the temperature T = 15 and 20 K for the same sys-
tem above-mentioned. Not only that, the positions of the
predicted maxima move to lower driving frequencies due
to the strengthened influence of Landau damping [4,6].
At the further higher temperature T = 35 K the double-
resonant structure degenerates into the conventional sin-
gle resonant shape. For the sake of comparison, we also
plot the corresponding results within RPA by dashed
curves in Figure 3. The nearly a fact of two to five dis-
agreement between the STLS and RPA theories empha-
sizes again the importance of the Coulomb correlations
in the systems. On the other hand, the short range cor-
relations also suppress the energies of the plasmon modes
(the inset of Fig. 1), i.e., raise the Landau damping effects
[6]. So the plasmon enhancement and the two maxima in
RT (ω) should occur at the lower driving frequencies for
the fixed temperature.
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7 Conclusions

In summary, we have performed theoretical studies on
the transfer transport for the Sivan’s electron-hole sys-
tem by means of Lei-Ting balance equations approach
for several types of carriers. In order to measure the
dynamical transresistance in the high frequency (THz)
regime, we have carefully analyzed the relationship be-

tween those four directly mearsurable quantities ρ
(e,h)
i

(i = 1, 2) and the dynamical transresistance ρT basing
on the balance equations approach and designed an ex-
perimental scheme to indirectly extract the information
of the high-frequency transresistance. Taking into account
the short range correlations, the theoretical results satisfy
very well with the experimental data for the linear dc tran-
sresistance. Moreover, frequency-dependent dynamical
transresistance displays an unusual and temperature-
susceptible double-resonant structure in the plasmon-
dominated regime for the investigated system, and we
have substantiated that this structure results from the
cooperation and competition between the two plasmon
modes. The important influence of the short range cor-
relations on the dynamical transresistance has also been
surveyed. Therefore, we can conclude that the measure-
ment of dynamical transport provides a reliable probe for
the two plasmon modes and many-body correlations in
electron-hole systems.
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